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ABSTRACT

In this report, we present the detailed description of the SINTRA1

global scheduler. The detailed description includes: (1) the replica control
algorithm, (2) design descriptions, and (3) rational behind our decision to
choose specific methodology, an implementation language, and software
engineering principles.
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1. Secure INformation Through Replicated Architecture



- 2 -

1. Introduction

Database security researchers have proposed several approaches to providing users
with different security clearances the capability to perform database operations securely
on information classified at different security levels. These approaches provide a mul-
tilevel view of information to which the user has legitimate access and then perform
database operations to respond to the user’s query. Most research has concentrated on
schemes for materializing this multilevel view from single-level fragments stored in files.
Decomposing multilevel relations into single-level relations in a way that assures that the
composition of the fragments is the same as the user’s view of the multilevel relation in
every case has presented many challenges for preserving database functionality as well as
providing the required security. The SeaView [Lun90] approach leads to the generation
of classified information whose classification is not a result of the sensitivity of the infor-
mation but is instead an artifact of the decomposition approach. Materializing multilevel
relations from single level base relations requires fairly complex mechanisms, and results
in some performance degradation.

These concerns led to the initiation of a project to investigate replication as a
promising alternative to achieve a MLS database system (DBS). The Secure INformation
Through the Replicated Architecture (SINTRA) project uses physical separation as a pro-
tection measure. A Trusted Front End (TFE) mediates access to separate untrusted back-
end DBSs (UBD) for each security class. Each backend DBS contains information at a
given class and replicated information from each lower backend database. A user has
access to all information that he can legitimately view.

The replicated approach has several advantages. Each user can access all informa-
tion he is authorized to see in a timely manner. Good performance and full database
capabilities are project goals. Since the SINTRA system does not materialize the user’s
view from single-level relations, this system should lead to high performance retrieval.
The mandatory access control is enforced through physical separation of data. The
mechanisms required to allow a user at a given session level access to a backend data-
base are straightforward and easy to understand. Hence, if one uses an evaluated product
as a trusted front end, very little trusted code needs to be developed to assure that this
separation is maintained. Other approaches are susceptible to some kinds of inference
attacks arising from tricking the MLS DBS into materializing unauthorized views. The
SINTRA DBS is not vulnerable to these attacks.

The SINTRA database system, which is currently being prototyped at the Naval
Research Laboratory, uses Honeywell XTS-200 system as a trusted frontend and
untrusted ORACLE databases which are running on SUN4/300 as backend databases.
The backend and frontend computers are connected through Ethernet.
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In the SINTRA project, we make the following assumptions:

(1) All UBDs use the same database query language (e.g., SQL).

(2) The TFE changes the database states of the UBD through a database query
language.

(3) Each UBD performs some type of scheduling which produces a serializable history.

Figure 1 illustrates the SINTRA architecture.
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There are two components between the trusted frontend and an off-the-shelf data-
base: (1) global scheduler and (2) query preprocessor. These two components assure the
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consistency and integrity of replicated data among different backend databases.

Global Scheduler

Since each UBD in a replicated architecture contains data from lower levels, update
queries have to be propagated to higher security level databases. If this propagation of
update queries, which will be called update projections in this paper, is not carefully con-
trolled, inconsistent database states among backend databases can be created. Consider
that two confidential level update transactions Ti and Tj are scheduled with serialization
order <Ti, Tj> at the confidential level backend database system. Since these two transac-
tions are update transactions, they have to be propagated to the secret level. If these two
transactions are scheduled with serialization order <Tj, Ti> at the secret level, an incon-
sistent database state between confidential and secret level backend databases may be
created. The criterion for consistency used here is one-copy serializability. Therefore,
the serialization order introduced by the local scheduler at the user’s session level must
be maintained at the higher level UBDs.

SINTRA’s global scheduler guarantees that the serialization order introduced by the
local scheduler at the user’s session level is maintained at the higher level UBDs. In sum-
mary, the global scheduler performs the following tasks:

(a) Receive queries from the preprocessor and the global scheduler of lower security
levels and send them to the appropriate backend database.

(b) Guarantee that the serialization order introduced by the local scheduler at the user’s
session level is maintained at the higher level UBDs.

(c) When a transaction is committed, send an update projection to higher security level
backends.

A generalized theory of a global scheduler for the SINTRA database system has been
presented in [KFC92].

Query Preprocessor

The SINTRA query preprocessor plays an important role in maintaining data con-
sistency among different backend databases, preserving data integrity, and bridging the
semantic gap between conventional and multilevel-secure databases. Some of our secu-
rity policy is embedded in our query preprocessor which will limit user’s query to access
certain portion of a relation. The query preprocessor is based on query modification.
When a user query is submitted to the query preprocessor, the user’s security level and
role is passed also. Depending on these data, user queries are modified so that our secu-
rity and integrity policies are not violated. A detailed description of the SINTRA query
preprocessor appears in [Kan92].
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2. The Model

In this section, models are presented for security, replicated architecture, and tran-
saction processing. The transaction model, which is presented in this section, can allevi-
ate the difficulties described in section 1.2.

2.1. Security Model

The security model used here is based on that of Bell and LaPadula [BeL76]. The
database system consists of a finite set D of objects (data item) and a set T of subjects
(transactions). There is a lattice S of security classes with ordering relation <. A class Si
dominates a class Sj if Si ≥ Sj. There is a labeling function L which maps objects and
subjects to a security class:

L: D ∪ T → S

Security class u covers v in a lattice if u > v and there is no security class w for which u
> w > v.

We consider two mandatory access control requirements:

(Simple Security Property)
If transaction Ti reads data item x then L(Ti) ≥ L(x).

(Restricted *-Property)
If transaction Tj writes data item x then L(Tj) = L(x).

The simple security property allows a transaction to read data items if the security level
of a transaction dominates the security level of data items. The restricted *-property
allows a transaction to write if the security level of a transaction is the same as that of
data items (i.e., no write-ups or write-downs are permitted). Write-ups (i.e., Ti writes to
data item x and L(Ti) < L(x)) are undesirable in database systems for integrity reasons.

2.2. Replicated Architecture Model

The system has a TFE, which mediates the access of subjects to objects. The TFE
contains the trusted computing base (TCB), but not all of the TFE need to be trusted. The
system also contains a set of single level untrusted backend databases C, one for each
element of the security lattice. Each backend database Cu contains copies of all data
items in all databases whose security level is dominated by security level u. Alterna-
tively, if L(x) = u such that x ∈ Cu, then there is a copy of x in each database whose
security level dominates u.
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2.3. Transaction Model

We adopt a layered model of transactions, where a transaction is a sequence of
queries, and each query can be considered as a sequence of reads and writes. For exam-
ple, replace and delete queries can be viewed as a read operation followed by a
write operation, insert can be viewed as a write operation, and retrieve can be
viewed as a read operation. A layered view of two transactions T1 and T2 is shown in
figure 2.

Layered model of two transactionsFigure 2:
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Definition 1.

A transaction Ti is a sequence of queries, i.e., Ti = <qi1, qi2, ..., qin>. Each query,
qij, is an atomic operation and is one of retrieve, insert, replace, or
delete.

To model the propagation of updates produced by a given transaction to higher
security level databases, update projection is defined.

Definition 2.

An update projection Ui, which corresponds to a transaction Ti, is a sequence of
update queries, e.g., Ui = <qi2, qi5, ..., qin> obtained from transaction Ti by simply
removing all retrieve queries.

To describe concurrency control mechanisms, we adopt the following definition of
conflict.
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Definition 3.

Two operations at the same layer conflict if and only if there is a possible state in
which they do not commute. Alternatively, two operations conflict if they operate
on common data and not both are retrieve operations.

In the following section, we present a concurrency control algorithm using the tran-
saction model above. In our concurrency control algorithm, the global scheduler works at
the query level (i.e., l(1) in figure 2).

3. A Concurrency Control Mechanism

In this section, a concurrency control algorithm is presented which makes no
assumptions about UBD scheduling. In this algorithm, two types of schedulers can be
identified, global and local schedulers. The global scheduler enforces data consistency
among different security levels. On the other hand, the local scheduler enforces serializa-
bility among transactions, including update projections, which are submitted to the back-
end database system. The local scheduler deals with layer l(0) in figure 2, and the global
scheduler deals with layer l(1) and upper layers. The global scheduler detects conflicts at
level l(1). Therefore, no knowledge of the specific items to be accessed or even the
granularity of the lower level concurrency controller is required.

3.1. Algorithm C

To describe the concurrency control protocol, we need to define several mechan-
isms:

g A queue Qu is associated with each backend database Cu, where u is a security
level. The purpose of Qu is to maintain a list of update projections which have been
executed and committed at Cu. The queue is ordered by the serialization order of
the execution of these transactions at Cu.

g In addition, there is an untrusted mechanism Ru which maintains Qu and can read
the contents of Qv for all v which are dominated by u in the security lattice.

g Another queue Au is associated with each backend database Cu. The purpose of Au
is to maintain a list of update projections which come from Qv, where v is covered
by u, and are waiting to be sent to Cu. The order of update projections in Au is
determined by the concurrency control algorithm which will be described later.

In our algorithm, Qu, Au, and Ru are considered parts of a global scheduler. Since
mechanism Ru has to read the contents of Qv for all v which are dominated by u, the Ru
and the Qu may be located in the TFE. However, Au may be located in the backend sys-
tem (see figure 1). Also in our algorithm, we say a backend database Cu covers Cv if u
covers v in the security lattice. The protocol processes transactions as follows:
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Algorithm C:
At each backend database Cu:

[1] Primary transactions (that are submitted directly by the user) and update pro-
jections are received from the global scheduler and submitted to the local
backend scheduler.

[2] As local transactions (primary transactions and update projections) are com-
mitted, a report of their serialization is sent to the global scheduler. These
reports are sent in an order consistent with the serialization order determined
by the local scheduler.

At the global scheduler:

[1] For each primary transaction Ti submitted to the TFE, Ti is dispatched to Cu
for processing where L(Ti) = u.

[2] Whenever a serialization report for Ti or Uj is received from Cu, it is added to
the end of Qu.

[3] The Ru scans the queue Qv for those v for which Cu covers Cv. The Ru will
retrieve an update projection Ui from Qv and add it to the end of Au when the
following condition is satisfied for all v ∈ S:

g If Cu covers Cv, and Uj can eventually appear in Qv, then it does appear
in the beginning of Qv.

[4] For update projections in the queue Au, update projections are sent to Cu one
after another. Specifically, if Ui is before Uj in the queue Au, then send Ui and
wait until Ui is committed at Cu, and then send Uj.

[5] An update projection is removed from Au once it is committed.

[6] If an update projection Ui is aborted then resubmit Ui to Cu.

In algorithm C, we assume that local schedulers report the serialization order of transac-
tions to the global scheduler. However, most database systems do not provide their serial-
ization order. Also it may not be easy to modify database systems to report the serializa-
tion order. In such cases, the take-a-ticket [Geo91] operation can be used to determine
serialization order. The take-a-ticket operation consists of reading the value of the ticket
just prior to commit time, and incrementing it through regular data manipulation opera-
tions. The value of a ticket determines the serialization order. All operations on tickets
are subject to the local concurrency control.

Note that algorithm C does not slow down user (primary) transactions. The global
scheduler of algorithm C concerns the serialization order of the update projections in Au
at each security level. Concurrency control among primary transactions and update
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projections is the responsibility of the local scheduler in the UBD.

Also note that Qu and Ru are not needed if the security classes form a completely
ordered set, since Au satisfies all the requirement of the algorithm. The proof of correct-
ness of the algorithm C is presented in [KFC 92].

4. Object-Oriented Development

The development methodology of the SINTRA global scheduler closely resembles
the object-oriented development method [Boo86]. Object-oriented development method
enable us to apply software engineering principles such as data hiding, modularization,
abstraction, etc. Many objects such as queries, transactions, processes, etc, have been
identified, and the relationships among these objects have been established. Many layers
are also introduced to hide lower-level details. C++ has been chosen as our main imple-
mentation language because the object-oriented programming language provides the
capabilities of information hiding and the abstraction of interfaces. Some of our code
which resides in the front-end is written in C, because XTS-200 provides neither a C++
interpreter nor the C compiler that can compile C code generated by a C++ interpreter.

We first introduce the conceptual process-level architecture (see figure 3) and the
role of each process.

The responsibilities of the processes are as follows:

1. Database Server:
Look for a user and create a database server child if a user logs in successfully.

1´. Database Server Child:
Ensure data flows among user, preprocessor, and user transaction scheduler conform
to connections in diagram.

2. Preprocessor:
Modify queries to enforce security/integrity properties (see [Kan92]).

3. User Transaction Scheduler:
Submit user transactions to the ORACLE database. Send the response from ORA-
CLE to the user and send update queries to the propagation scheduler.

4. Propagation Scheduler:
Receive transactions and send them to the corresponding front-end update projec-
tion receiver according to the serialization order.

5. Update Projection Scheduler:
Receive update projections from the lower level backend, submit them to the ORA-
CLE database, and send them to the propagation scheduler.
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The SINTRA Process-level Architecture.Figure 3:

6. Projection Sender:
Read-down to get the update projections which are in the lower level projection
receiver and send the projections to the update projection scheduler.
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7. Projection Receiver:
Receive update projections from the propagation scheduler and store them for
retrieval by the projection sender.

8. Front-end Connector:
Establish a virtual connection between the user and the backend depending on the
user’s session level.

The above process-level architecture has been implemented using objects, and inter-
process communication can be implemented by message passing between objects. Com-
plex inter-process communication details has been hidden by inter-process communica-
tion (ipc) object methods. Figure 4 shows process objects, communication paths, and
messages which are passed.

Note that update projection scheduler has been implemented using two separate
processes (figure 4). The reason for using two processes is that the transactions which are
propagated from the lower level can be received by update projection scheduler (child)
even if update projection scheduler (parent) is busy with processing update projections.

The Communication method between two processes in database systems should not
only be recoverable in case of system failure but also be able to collect garbage in a rea-
sonable way. There are several communication methods between two processes at dif-
ferent security levels:

Read-down:
A higher-level process reads-down the message in the lower level process. This
method is recoverable but has a difficulty to collect garbage. Since the lower level
process does not know when the higher level process has read the message, the
lower level process has a difficulty to determine when to remove the message from
its message queue.

Blind Write-up:
A lower-level process sends messages to a higher level process. The lower level
process then assumes that the higher level process receives the message and
removes the message from its message queue. This method either has the same
problem as the read-down or is not recoverable because the lower level process
never be sure if the higher level process actually receives the message or not.

Write-up with Acknowledgement:
This method sends an acknowledgement when the higher level process receives a
message from the lower level process. This method is recoverable and no difficulty
to collect the garbage. However, since the higher level process sends an ack-
nowledgement, this can be used as a covert timing channel by Trojan horses. Even
though there are few ways to reduce the bandwidth of this timing channel, the
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Figure 4: The SINTRA Process Objects and Communication Paths.

trade-off between the bandwidth of this channel vs. the performance penalty is yet
to be investigated.

Currently, the communication between the projection receiver and the projection sender
is accomplished through a read-down method (the projection sender reads-down transac-
tions in the lower level projection receiver).

Figures 5.1 and 5.2 show the composition of SINTRA process objects along with
the inheritance relationship between major classes that compose the system.



- 13 -

sched_starter parser_starter

Class Hierarchy

update_proj_server

propagation_client

ipc

frontend_clientany_server

propagation_server user_server

process

dbserver_childrprocess
upsched

oracle

user

user_cmd
sorted_trans_list

linked_list

transaction

ticketquery_list

query

Figure 5.1:



- 14 -

Figure 5.2: Composition of Process Objects

frontend_client

propagation_server

sorted_trans_list

transaction

dbserver

user_server

dbserver_child

oracle

oracle query

propagation_client

transaction

sched

upsched

oracle

propagation_client

update_proj_server

user

user_cmd

dbserver_child

psched

parser

parser_starter

sched_starter

Dbserver (database server), psched (propagation scheduler) and upsched (update projec-
tion scheduler) are static process objects that are created when SINTRA is started. One



- 15 -

copy of the process objects dbserver_child (database server child), parser (query prepro-
cessor) and sched (user transaction scheduler) is created per user login and destroyed
when the user logs out. The responsibilities of the process objects have been described in
section 4. A description of the classes pictured in figure 5.1 that compose the process
objects follows:

Ipc:
This class provides methods which can be used to communicate between process
objects. It is implemented on top of Unix sockets.

Propagation_client:
In addition to the functionality inherited from ipc, it can be used to connect to the
propagation scheduler.

Any_server:
This class advertises a communication end-point for other processes to connect to.

Frontend_client:
In addition to the functionality inherited from ipc, it can be used to connect to the
projection receiver which is executing on the frontend.

Update_proj_server:
In addition to the functionality inherited from any_server, it can be used to register
the user update projection scheduler and provides a send and receive port to process
objects wanting to send and receive update projections.

Propagation_server:
In addition to the functionality inherited from any_server, it can be used to register
the propagation scheduler within the system and provides a send and receive port
that can be used to send and receive update projections.

User_server:
In addition to the functionality inherited from any_server, it can be used to register
the dbserver within the system and provides a send port that can be used to send text
to the user (via the frontend connector) and a receive port that can be used to
receive commands from the user.

Process:
It can be use to create a copy of the current executing process.

Rprocess:
In addition to the functionality inherited from process, it can be used to redirect the
standard input, output and error streams of the process that it is invoked by.

Sched_starter:
In addition to the functionality inherited from rprocess, it can be used to start the
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user transaction scheduler in a manner that causes the user transactions scheduler’s
i/o streams to be connected to the dbserver_child.

Parser_starter:
In addition to the functionality inherited from rprocess, it can be used to start the
preprocessor in a manner that causes the preprocessor’s i/o streams to be connected
to the dbserver_child.

Oracle:
It can be used to access the ORACLE DBMS.

User:
It contains information about the currently logged on user.

5. Conclusion

We presented the detailed description of the SINTRA global scheduler. Even
though large portions of the SINTRA global scheduler do not have to be trusted, we have
tried to follow good software engineering principles in designing and structuring the
code.

We have prepared this report for system designers and programmers who want to
understand the structure of the SINTRA global scheduler. We also hope this report is also
helpful to the people who will maintain the SINTRA global scheduler code.
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Appendix: Description of Top-level Routines

The followings are the description of top-level routines of process objects written in
C++ looking pseudo-code:

/* preprocessor class */

while(1) {
user_cmd.receive(dbserver_child.out());
process();
query.send(preprocessor.out());

}

/* dbserv class */

initialize_ticket();

USER_SERVER user;
while(1) {
while(try_connect());
// user is connected, create necessary child processes
DBSERV_CHILD db_per_user(user); // create dbserver child instance

}
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/* dbserv_child class */

PREPROCESSOR_STARTER preprocessor();// create preprocessor instance
SCHED_STARTER sched(); // create user transaction scheduler
// establish connection from/to the user, preprocessor, and user scheduler
establish_connection();
// receive messages
do {

if(ready(user.out())) {
user_cmd.receive(user.out());
user_cmd.send(preprocessor.in());

}

if(ready(preprocessor.out())) {
query.receive(preprocessor.out());
query.send(sched.in());

}
else if(ready(preprocessor.err())) {

error.receive(preprocessor.err());
error.send(front_end.in());

}

if(ready(sched.out())) {
reply.receive(sched.out());
reply.send(user.in());

}
} while (connection_established);
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/* user scheduler class */

// establish connection to propagation scheduler and ORACLE
connect_to_psched();
connect_to_oracle();
while(1) {

query.receive(dbserver_child.out());
if(query.is_commit() | | query.is_exit()) {

trans.get_ticket_and_commit();
if(level != TOP_SECRET)

trans.send(psched.in());
}
else {

query.send(oracle.in()); // execute the query
reply.receive(oracle.out());
reply.send(sched.out()); // send reply
if(query.is_abort())

trans.clear(); // clear the queries in transaction
else if(query.is_update())

trans.append(query);
}
if(query.is_exit())

break;
}
// if user wants to exit then disconnect from propagation scheduler and ORACLE
disconnect();
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/* update projection scheduler */

// create a queue to be shared between the receiver and sender below
create_trans_queue();

create_child_process(); // child process will receive projections
// from the frontend

if (parent) {
// establish connection to the propagation scheduler and ORACLE
connect_to_psched();
connect_to_oracle();

while(1) {
trans.get_trans(queue); // get one update projection from queue
trans.send(oracle.in()); // send transaction to ORACLE
if(level != TOP_SECRET)

trans.send(psched.in());
}

} else { // child
// establish connection to the frontend
connect_to_front();

while(1) {
trans.get_trans(frontend.out()); // get one update projection

// from the frontend

trans.send(queue); // enqueue the transaction
}

}
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/* propagation scheduler */

connect_to_front(); // connect to the front-end
let_client_connect(); // allow clients’ connections
INT expected = FIRST_TICKET; // initialize expected ticket number
while(1) {

trans.get_trans(); // get one update projection
if(trans.get_ticket() == expected) {

trans.send(frontend.in());
expected++;

}
else // if transaction’s ticket is not in order

sorted_list.insert(trans); // then put it in a queue

while(sorted_list.first() && sorted_list.first().get_ticket() == expected) {
trans = sorted_list.get_first();
trans.send(frontend.in());
expected++;

}
}


